Location: Bruree, Co. Limerick

Unique ID: (from PFRA database)

<table>
<thead>
<tr>
<th>Initial OPW Designation</th>
<th>APSR</th>
<th>AFRR</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-ordinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easting: 155170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northing: 130420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River / Catchment / Sub-catchment</td>
<td>River Maigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Flooding / Flood Risk (identify all that apply)</td>
<td>Fluvial non-tidal</td>
<td>Fluvial tidal</td>
<td>Coastal</td>
</tr>
</tbody>
</table>

Stage 1: Desktop Review

1.1 Flood History (include review of Floodmaps.ie)

River Flow Path
The River Maigue flows roughly N-S to the west of Bruree. There is an extensive network of streams feeding into the River Maigue north and south of Bruree. Within the extent of the town there is one tributary south of the town.

Flood event records
There are two flood records (from 1986-1999) for the same area Howardstown; one singular and one recurring. This flood area is located North of Bruree approx 2km.

1.2 Relevant information on flooding issues from OPW and LA staff

PFRA database comments (in italics):

OPW comments
Not designated APSR as failed to reach predictive analysis threshold

LA comments
(arm) OPW Scheme in place. Risk to house upstream of bridge (pm).

Meeting / discussion summary comments:

OPW comments
- Not a significant problem. One house possibly at risk of flooding.

LA comments (Limerick County Council)
- Not aware of any flooding issues in this area, but can check with the area engineer and advise.
1.4 PFRA Data

<table>
<thead>
<tr>
<th>1.4.1 PFRA hazard mapping</th>
<th>PFRA mapping available in GIS layer:</th>
<th>Yes ✗ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PFRA mapping included on FRR map:</td>
<td>Yes ✗ No ☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4.2 Summary of Principal Receptors</th>
<th>Type</th>
<th>FRI score (if available)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receptors not considered as part of the PFRA process.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRI score not calculated in PFRA.</td>
<td></td>
</tr>
</tbody>
</table>

1.7 Stage 1 Evaluation

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Clearly APSR</th>
<th>Uncertain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood History (1.1)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OPW / LA Information (1.2)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PFRA Evaluation (1.4)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Overall Desktop Evaluation</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(if any above aspect is uncertain then overall designation is uncertain)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.8 Proposed level of assessment for Stage 2 site visits

<table>
<thead>
<tr>
<th>Level A Site Visit</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level B Site Visit</td>
<td></td>
</tr>
</tbody>
</table>
Stage 2: Site Inspection

Level A Assessment

| Date and Time of Inspection | Date: 30/03/11
<table>
<thead>
<tr>
<th>Time: 10:30</th>
</tr>
</thead>
</table>

Names of inspection team (including OPW/LA staff if present)

<table>
<thead>
<tr>
<th>Iain Blackwell</th>
<th>Kelly Kasperczyk</th>
</tr>
</thead>
</table>

2.1 Ground-truthing of Hazard Mapping

<table>
<thead>
<tr>
<th>Fluvial non-tidal</th>
<th>Fluvial tidal</th>
<th>Coastal</th>
<th>Not available</th>
</tr>
</thead>
</table>

Flood outlines appear reasonable, reflecting local topography well.

2.2 Spot check ground-truthing of selected receptor vulnerability (also note any key receptors noted during visit that are not identified by PFRA)

<table>
<thead>
<tr>
<th>Receptor Type</th>
<th>Location description (if not obvious)</th>
<th>Exists?</th>
<th>Overall Vulnerability / Risk (L / M / H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Church and graveyard</td>
<td>Above left bank, upstream of main bridge</td>
<td>Yes</td>
<td>L – on very high ground</td>
</tr>
<tr>
<td>Mill buildings</td>
<td>Downstream of main bridge on right bank.</td>
<td>Yes</td>
<td>M – high above river, but level with mill race</td>
</tr>
<tr>
<td>Bridge</td>
<td></td>
<td>Yes</td>
<td>M</td>
</tr>
</tbody>
</table>

2.3 Local knowledge - on-site comments (OPW, LA and any info volunteered by local residents during visit)

No on-site comments.

2.4 Comments on hydraulic constrictions (bridges, etc.) and conveyance routes

Seven-arch bridge. Two left arches are blocked with sediment.

High ground at left bank (u/s and d/s of bridge).

Weir downstream of bridge artificially raises levels. This is the hydraulic control for the river and provides the head for the mill race and mill headrace.

River bends u/s of the bridge next to a few residential properties on right bank.

No expansive flood plain along this reach.
2.5 SVRS Assessment Matrix

Weightings:
A - x1 - reasonable expectation of flooding
B - x2 - high expectation of flooding
or flooding is tidal (any risk)
C - x5 - risk to life

<table>
<thead>
<tr>
<th>Approx. Number</th>
<th>Property (domestic)</th>
<th>Property (small retail or business)</th>
<th>Property (large retail or business)</th>
<th>Road or Rail Infrastructure</th>
<th>Critical Infrastructure (local)</th>
<th>Critical Infrastructure (national importance)</th>
<th>Cultural Heritage Site</th>
<th>Environmental Designated Site</th>
<th>Hazardous Substances Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 4</td>
<td>A 10</td>
<td>B 100</td>
<td>C X</td>
<td>A 100</td>
<td>B 500</td>
<td>C 1000</td>
<td>A 200</td>
<td>B 200</td>
<td>C 1000</td>
</tr>
<tr>
<td>5 to 20</td>
<td>A 200</td>
<td>B 400</td>
<td>C 200</td>
<td>A 300</td>
<td>B 500</td>
<td>C 1000</td>
<td>A 400</td>
<td>B 400</td>
<td>C 1000</td>
</tr>
<tr>
<td>>20</td>
<td>A 200</td>
<td>B 400</td>
<td>C 200</td>
<td>A 300</td>
<td>B 500</td>
<td>C 1000</td>
<td>A 400</td>
<td>B 400</td>
<td>C 1000</td>
</tr>
</tbody>
</table>

Total SVRS 150

2.6 Defence Assets

Formal and Informal Flood Defence Assets
include effective and ineffective assets to inform asset survey and potential mitigation measures

<table>
<thead>
<tr>
<th>Open Channel Watercourses</th>
<th>Man-made river channel</th>
<th>Flood relief channel</th>
<th>Canal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges and Culvert crossings</td>
<td>Single Arch bridge</td>
<td>Multi-Arch bridge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Span bridge</td>
<td>Multi-Span bridge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Box culvert(s)</td>
<td>Pipe culvert(s)</td>
<td>Arch Culvert(s)</td>
</tr>
<tr>
<td>Culverted Watercourses (culvert length is greater than just a crossing)</td>
<td>Box culvert(s)</td>
<td>Pipe culvert(s)</td>
<td>Arch Culvert(s)</td>
</tr>
<tr>
<td>Walls and Embankments</td>
<td>Embankment(s)</td>
<td>Raised wall(s)</td>
<td></td>
</tr>
<tr>
<td>Control Structures – weirs, gates, dams</td>
<td>Fixed crest weir</td>
<td>Adjustable weir</td>
<td>Dam / Barrage</td>
</tr>
<tr>
<td></td>
<td>Sluice gates</td>
<td>Lock gates</td>
<td>Radial gates</td>
</tr>
<tr>
<td>Storage</td>
<td>On-line storage (natural)</td>
<td>On-line storage (artificial)</td>
<td>Off-line storage</td>
</tr>
</tbody>
</table>
| **Outfalls** | Flapped outfall(s) into watercourse | Unflapped outfall(s) into watercourse
i.e. from smaller watercourses, drains etc. into river / estuary / sea | Tidal flap(s) | Tidal sluice(s) |
i.e. from main watercourse into estuary / sea

Other
Pumping Station ☐ Erosion Protection ☐ Sand Dunes ☐

Additional notes (if required):
Main flood defence asset is the flood wall on the right bank upstream and downstream of the bridge.

2.8 Initial Potential Mitigation Measures

<table>
<thead>
<tr>
<th>Non-structural measures</th>
<th>Planning and Development control ☐ Sustainable Urban Drainage Systems ☐ Flood forecasting / warning ☒ Change in Operating Procedures for water level control: ☐ Public awareness campaign ☐ Individual property protection ☒ Land use management ☐</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Structural measures</th>
<th>Strategic development management for floodplain development: (integration of measures into strategic development proposals) ☐ Storage: On-line ☐ Off-line ☐ Flow diversion: Flood relief channel ☒ Flood relief culvert ☐ Increase conveyance: Bridge works ☒ Channel works ☐ Floodplain ☐ Flood defences: Walls ☐ Embankments ☐ Localised works: Defence raising ☒ In-fill gaps ☒ Trash screen ☐ Maintenance works: Culvert / channel clearance ☐ Asset maintenance ☒ Relocation of properties: ☐ Improve existing defences: ☒ (describe)</th>
</tr>
</thead>
</table>

Minor improvements may be possible through creating (or repairing) flapped outfalls on right bank downstream of main bridge, and raising flood wall upstream of the bridge on the right bank.

Other (describe):
The existing weir and mill race could be altered to increase capacity and reduce the upstream water level (as this is the hydraulic control). However, the potential impact on cultural heritage (mill) and river bed ecology would need to be considered.
Outcomes

<table>
<thead>
<tr>
<th>PFRA Designation</th>
<th>APSR ✗</th>
<th>not an APSR ☐</th>
<th>IRR ☐</th>
<th>FRI Score: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Ground-truthing of PFRA Assessment (hazard mapping and receptors)</td>
<td>High Confidence (good)</td>
<td>Uncertain</td>
<td>Low Confidence (poor)</td>
<td>Not available</td>
</tr>
<tr>
<td>Site Visit Review Score</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Designation</td>
<td>APSR ☐</td>
<td>not an APSR ✗</td>
<td>IRR ☐</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary Comments (if required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A total of around 5-8 properties are potentially at risk on the right bank both upstream and downstream of the main bridge. Properties on the upstream side of the bridge are protected by a flood defence wall. In the absence of this wall, the properties may be at risk of flooding, and the main route through the town may become disrupted. With a small number of properties at risk, this is a borderline case.</td>
</tr>
<tr>
<td>A brief review of historic flows (rather than historic floods, of which there are none) as recorded at the Bruree Gauging Station, shows that the gauging station has 58 years of data. The biggest flows on record are 1989, followed by 1983 and 1998 at around the same value. No flooding was recorded in any of these events.</td>
</tr>
<tr>
<td>Given the biggest flow on record since 1953 occurred in 1989, it is expected that there would be some knowledge of flooding in Bruree if it took place. Similarly (and more likely) for 1998, a knowledge of any significant flooding would be expected as this is a relatively recent event. This event is likely to be around the 2-3% Annual Exceedance Probability (AEP) event (possibly rarer) although it is noted that a flood frequency analysis of this gauging station site has not been carried out.</td>
</tr>
<tr>
<td>On the basis of this local gauge (very close to the town), the lack of flood history, lack of support from the LA or OPW, and the relatively small number of properties potentially at risk, it is recommended that this site is not designated as an APSR.</td>
</tr>
<tr>
<td>The SVRS score of 150 is comparable with other sites that are included as APSRs, however, the recommendation is driven by the on site findings rather than the SVRS.</td>
</tr>
</tbody>
</table>
Photo 1: River Maigue u/s of multi-arch bridge. Properties on the right bank protected by a flood wall.

Photo 2: Downstream side of multi-arch bridge. Some low properties on d/s side on right bank.

Photo 3: Mill and weir located d/s of the bridge. Most properties on the right bank are elevated above the flood plain.

Photo 4: Low lying properties on the right bank immediately d/s of the bridge.
Photo 5: River looking d/s to the main bridge. Properties on the left bank have partial protection from the wall on the right bank. Limited flood plain on the left bank with the land rising sharply.

Photo 6: U/s view on the approach to Bruree. Left bank (on right on photo) is seen to much lower than the right bank.
The PFRA Flood Extents shown are indicative. They have been developed using simple and cost-effective methods that are suitable for the PFRA. They should not be used for local decision-making or any other purpose without verification.